
 

 

  

Abstract—An approach for unsupervised speaker identification 

based on text dependent speaker-specific phoneme model is proposed. 

The highlight of the approach is the use of parametric t-distributed 

stochastic neighbour embedding (t-SNE), to map high dimensional 

extracted features to a lower dimension such that intrinsic features are 

retained. This is the first time that parametric t-SNE was successfully 

implemented to visualize high dimensional voice features in a 3D 

space. The visualisation facilitates tuning of the parameters of the 

speaker models based on the topology of the speakers’ low 

dimensional features. The experimental results for a speaker 

identification set up using the CSLU ISOLET Spoken Letter Database 

shows a 3D plot of clusters with good class sparsity, measured using 

the Kullback-Liebler divergence metric. As no other similar work has 

been reported, a fair model-to-model comparison of performance is not 

available. However, the rate achieved is comparable to other works 

using parametric t-SNE for automatic classification of data in other 

domains. 

 
Keywords—deep neural network, gap statistic, gaussian mixture 
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I. INTRODUCTION 

PEAKER recognition is a technique to automatically 

identify who is speaking. Automatic speaker recognition 

systems have existed since the 1960s with early works by 

[1]–[3]. It can be classified into two general tasks; speaker 

identification and speaker verification. In speaker identification 

[4]–[6], utterance from an unknown speaker is compared with 

utterances of known speakers in a closed set. The unknown 

speaker is identified as the most likely speaker with the highest 

similarity score. For speaker verification [7][8], the system only 

checks for similarity with utterances associated with the 

claimed identity in the closed set. The similarity score is 

compared with a threshold to make an accept or reject decision. 

The threshold is set to give a good trade-off between accepting 

impostors and falsely rejecting valid speaker. 

Speaker recognition techniques can be divided into text 

dependent and text independent techniques. In text-dependent 

systems, the texts are fixed, and it is assumed that the speaker 

would utter the same texts as for training. These constraints are 

quite reasonable and can improve the accuracy of the system. 

Many applications such as biometric systems to allow 

authorized access are based on scenarios with cooperative users  
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speaking fixed texts. However, there are also applications 

where it is not possible to enforce such constraints. One 

example is in a forensic identification system, where the 

identity of the person in question is identified behind the scene. 

A system with no constraints on the spoken texts is known as 

text-independent systems. Since the speaker can utter any 

words or phrases during recognition, it is more difficult to fool 

the system as it is harder to mimic unknown texts. Hence, text-

independent systems are more challenging [7]. 

This paper proposes an approach for speaker identification, 

which could be used for many speaker recognition tasks based 

on short utterances. Central to the approach is the use of the 

dimensionality reduction technique, parametric t-distributed 

stochastic neighbour embedding (pt-SNE) which, for the first 

time, successfully map high dimensional extracted voice 

features to a low dimensional space with good class 

separability. The advantage of using the technique is that it 

allows embedding out-of-sample data without the need to re-

train the map. Also, utilising a deep neural network (DNN) 

allows for quick embedding of high-dimensional features into 

its pre-trained low-dimensional map, computational efficiency 

and improved decision-making duration. The paper is 

organized as follows. In Section II, the proposed approach and 

related work which gives the theoretical background for our 

work is presented. Section III presents the voice corpus used 

and the experimental set up. Section IV describes the 

optimization strategy for determining the optimal DNN 

architecture and observations made from the successive visual 

analysis. Sections V and VI discuss results for the speaker 

modelling and decision-making stages respectively while 

Section VII concludes the paper with recommendations for 

future work. 

II. PROPOSED APPROACH AND RELATED WORK 

Fig. 1 shows the proposed approach [9] which incorporates 

and integrates existing techniques; specifically, the pt-SNE. 

A. Pre-processing 

A speaker identification system begins with a training stage 

where users provide utterances for training. These are passed 

through a pre-processing stage to provide features suitable for 

speaker modelling. The utterances are divided into frames of 

25ms length using Hamming window at 10ms frame rate. A 
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voice activity detection proposed by [10] is then performed to 

remove silence segments from the samples to ensure that they 

do not contribute to clusters in the visualization stage. 

 

B. Feature Extraction 

 

The next stage extracts salient features conveying speakers’ 

information. We used gammatone frequency cepstral 

coefficient (GFCC) applied to the frames to provide 66 

coefficients. Even though our voice data (presented in Section 

III) do not contain noise, we used GFCC for the following 

reasons. GFCC minimizes sensitivity to noise - an important 

feature for a real scenario where speakers would usually utter 

texts in a noisy environment. Furthermore, the Gaussian 

Mixture Models (GMM) [11] which we will employ for speaker 

modelling in a later stage usually do not perform well under 

noisy conditions [12][13]. Therefore, the use of GFCC in an 

earlier stage would reduce performance degradation by GMM. 

We also found that using GFCC instead of the more common 

MFCC, provided less class-overlapping on 3D visualization 

graphs obtained using the t-SNE dimensionality reduction 

technique. One reason for the better performance is that GFCC 

has an Equivalent Rectangular Bandwidth (ERB) scale of a 

finer resolution compared to the Mel scale over the low-

frequency range, where most of the speech energy resides [13]. 

The features provided by GFCC are appended with pitch, a 

speaker’s voice attribute, to give a total of 67 features. Pitch is 

a gender-dependent feature that will provide a more precise 

characterization of speakers to increase overall identification 

rates [14] [15]. 

C. Dimensionality Reduction 

 

Visualization of the 67 features on a low dimensional map 

would facilitate identification of speakers. This brings the need 

for a dimensionality reduction technique to map the high 

dimensional features to a lower dimension such that the 

intrinsic characteristics of speakers are retained. A 

dimensionality reduction technique reduces the high 

dimensions of an 𝑛 × 𝐷 dataset X into a new 𝑛 × 𝑑 low 

dimensional dataset Y, where 𝑛 is the number of datavectors xi 

and yi (𝑖 𝜖 {1,2, … , 𝑛}), 𝐷 is the original dimensionality of X 

and 𝑑 is the intrinsic dimensionality (usually 𝑑 ≪ 𝐷). The term, 

intrinsic dimensionality, indicates that datavectors xi lie on or 

near a 𝑑-dimensional manifold embedded in the 𝐷-dimensional 

space [16]. 

Some early dimensionality reduction techniques are 

principal component analysis (PCA) [17], linear discriminant 

analysis (LDA) [18][19], multidimensional scaling [20], 

Isomap [21], local linear embedding (LLE) [22] and stochastic 

neighbour embedding (SNE) [23]. In 2007, the prize-winning t-

SNE, adapted from SNE, was introduced. t-SNE’s key feature 

which captures local structure and preserve global distribution 

of features has made it one of the best techniques for visualizing 

high dimensional data as 2D or 3D scatterplots. It has been 

successfully applied to visualize data in many domains such as 

handwritten digits and images [24], text documents [25], 

genetic diseases [26] and animal mapping behaviour [27]. 

 

The primary feature of t-SNE is capturing of local structures, 

while retaining global data distribution. Its algorithm begins by 

Fig. 1 Proposed Unsupervised Speaker Identification Approach 

 



 

 

converting the Euclidean distances between pairs of datapoints 

𝒙𝒊 and 𝒙𝒋 (i ≠ j) in the high dimensional space (hyperspace) to 

the joint probability distribution 𝑝𝑗|𝑖, the conditional probability 

that 𝒙𝒋 would pick 𝒙𝒊 as its neighbor. 

  
 

𝑝𝑗|𝑖 =  

exp (−
‖𝒙𝒊 − 𝒙𝒋‖

2

2𝝈𝒊
𝟐 )

∑ exp (−
‖𝒙𝒊 − 𝒙𝒌‖2

2𝝈𝒊
𝟐 )𝑘≠𝑖

, 𝑝𝑖|𝑖 =  0 (1) 

 

where 𝝈𝒊 is the standard deviation of the Gaussian probability 

distribution centered about 𝒙𝒊. Technically, dense regions have 

smaller values of 𝝈𝒊 compared to sparser regions. Any value of 

𝝈𝒊 induces a probability distribution 𝑷𝒊 over all the other 

datapoints. t-SNE carries out a binary search for its value based 

on a user-defined parameter called perplexity which can be 

interpreted as the average number of neighbor datapoints 

surrounding each 𝒙𝒊. Values of the perplexity is typically varied 

between 5 and 50 till the optimum value is reached for the 

problem in hand [28]. 

 

Perplexity(𝑷𝒊) = 2𝐻(𝑷𝒊) (2) 
 

where 𝐻(𝑷𝒊) is the Shannon entropy of 𝑷𝒊 measured in bits. 

Similar to  𝑝𝑖𝑗 , 𝑞𝑖𝑗  models the probability that map point 𝒚𝑗, the 

low dimensional counterpart of 𝒙𝒊, would take 𝒚𝒊, as its 

neighbor using (3), following a Student t-distribution with one 

degree of freedom. 

 

𝑞𝑖𝑗 =  
(1+‖𝒚𝑖−𝒚𝒋‖

2
)

−1

∑ (1+‖𝒚𝒊−𝒚𝒌‖2)−1
𝑘≠𝑖

, 𝑞𝑖|𝑖 =  0 

 

(3) 

The locations of 𝒚𝒊 are determined by minimizing the cost 

function C, based on the Kullback-Leibler (KL) divergence 

[29][30][31] using a gradient descent method. 

 

𝐶 = ∑ 𝐾𝐿(𝑷𝒊||𝑸𝒊)

i

= ∑ ∑ 𝑝𝑗𝑖 log (
𝑝𝑗𝑖

𝑞𝑗𝑖
)

ji

 (4) 

 

where 𝑷𝒊 represents the conditional probability distribution 

over all other datapoints given datapoint 𝒙𝒊 and 𝑸𝒊 the 

equivalent for the low dimensional map. 

 

A year after t-SNE was introduced, parametric t-SNE (pt-

SNE) was proposed in 2009 [32]. The mapping from high 

dimensional space X to the low dimensional space Y is 

parametrized by means of a feed-forward deep neural network 

(DNN), which is trained in a way to preserve local structure of 

the data in Y. pt-SNE avoids being stuck in local minima by 

going through three consecutive stages for training its DNN: (i) 

training a stack of RBMs to minimize contrastive divergence 

[33][32], (ii) concatenating the stack of RBMs to construct the 

feedforward neural network and (iii) employing the standard 

backpropagation to minimize the cost function. 

Like t-SNE, pt-SNE utilizes (1) to compute the Gaussian 

similarity conditional probabilities, 𝑝𝑖𝑗, in the hyperspace. But 

since the latter technique is a parametric model, it computes 

Student-t distributed similarity probabilities, 𝑞𝑖𝑗 , in the low 

dimensional map as a function of high dimensional input 

datapoints 𝒙𝒊 feedforward through the DNN being trained: 

 

𝑞𝑖𝑗 =  

(1 +
‖f(𝒙𝒊|𝑾) − f(𝒙𝒋|𝑾)‖

2

𝑣 )

−
v+1

2

∑ (1 +
‖f(𝒙𝒌|𝑾) − f(𝒙𝒍|𝑾)‖2

𝑣
)

−
v+1

2

k≠l

  , 

𝑞𝑖𝑖 =  0 

 

(5) 

where 𝑣 is the number of degrees of freedom of Student-t 

distribution and 𝑓(𝒙𝒊|𝑾) refers to the DNN mapping of a high 

dimensional datapoint, 𝒙𝒊, to a low dimensional map point, 𝒚𝒊. 

There are multiple ways to decide about the variable 𝑣 [32]; 

however, this paper considers the linear relationship governing 

the number of degrees of freedom such that 𝑣 = 𝑑 − 1. Next, 

the gradient of the cost function is partially differentiated with 

respect to the DNN’s weights, 𝑾, instead of map points in the 

case of t-SNE 
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=
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∂f(𝒙𝒊|𝑾)

∂𝑾
 (6) 

 

where the differential term 
𝜕𝐶

𝜕𝑓(𝒙𝒊|𝑾)
 is given by 
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(7) 

 

and 
𝜕𝑓(𝒙𝒊|𝑾)

𝜕𝑾
 can be computed using the standard 

backpropagation algorithm knowing the activation functions at 

each layer of the DNN. Consequently, each training epoch ends 

by updating the weights between each two successive layers. 

 

 

E. Speaker Model Generation 

 

The aim of speaker model generation is to obtain a unique 

identifier to the features of each speaker in the closed set of 

speakers. The techniques can be broadly categorized into 

template-based and stochastic-based techniques. Template-

based techniques aim to minimize some squared distance or 

error measures. Examples are Dynamic Time Warping (DTW) 

[34] [35] and Vector Quantization (VQ) [36]. For stochastic-

based techniques, each speaker is modelled as a probabilistic 

source with an unknown fixed probability function which are 



 

 

estimated from the training data [37]. Matching is done by 

evaluating the likelihood of the test data with respect to the 

trained model. Examples of popular stochastic models are the 

Hidden Markov Model (HMM) and the Gaussian Mixture 

Model (GMM). Over the last decade, GMM has become 

established as the standard model for text-independent speaker 

recognition [11]. It is a parametric probability density function 

represented as a sum of Gaussian components densities. GMMs 

have three advantages (i) it is based on a well-understood 

statistical model (ii) it is computationally inexpensive and (iii) 

the models can be scaled and updated to add new speakers with 

relative ease [37] [38]. Our proposed approach uses GMM and 

includes using the gap statistic method proposed by Tibshirani 

et al [39] to determine the optimal number of clusters, hence 

Gaussian components, after evaluating the clustering 

performance against different numbers of clusters, and the 

iterative expectation-maximization (EM) algorithm proposed 

by [40] to perform the maximum likelihood estimation (MLE) 

[41] of the GMM’s model parameters, which are initialized 

using K-means++ clustering algorithm [42] prior to applying 

the EM algorithm. 

F.  Decision-Making 

 

Every out-of-sample datavector corresponding to testing 

extracted features is embedded into the pre-trained low-

dimensional map, thus, compared against every mixture model 

based on its corresponding GMM’s joint probability. 

Subsequently, each testing datavector is assigned to the 

speaker, whose GMM model yields the highest joint 

probability. Combining all the classification decisions of the 

overlapping testing frames, the current testing utterance is 

finally assigned to the most frequently identified speaker. 

III. EXPERIMENTS 

t-SNE based techniques have shown more meaningful 

visualizations of high dimensional datasets compared to other 

techniques in terms of class separability and cluster 

conciseness. Some successful applications can be found in 

[43][44][45]. To-date, there has been no reported success on 

using pt-SNE for visualization of high dimensional voice 

features. Hence, our work investigated the feasibility of using 

pt-SNE as (i) it is a parametric technique, making it favored 

over other techniques for various applications, and (ii) it has 

many tunable parameters enhancing control over performance. 

 

A. Data Corpus 

 

 The voice corpus used in this work is the ISOLET Spoken 

Letter Database version 1.3 [46], which consists of 75 male and 

75 female speakers where each speaker holds two utterances of 

each English letter. Each utterance lasts for two seconds. After 

silence removal, the duration of each utterance varied, with a 

maximum of 1 second, depending on the length of silence in 

each recording.  Speakers’ ages range from 14 to 72 years old 

with an average of 35 years old. 

 

B. Experimental Setup 

 

The MATLAB R2017b was the software used for this 

experiment. The extracted features per frame of all speakers 

were normalized to values between 0 and 1 due to utilizing 

Bernoulli-distributed hidden nodes during RBM pre-training of 

the DNN. Each frame represents one high dimensional 

datapoint. 

As t-SNE based techniques are unsupervised techniques, 

they do not take into consideration any class labelling of the 

input data. Since the aim is to classify purely speaker-dependent 

features, to rule out classification of speaker-independent 

features, the experiment was performed with one single letter, 

as the fixed text, for all speakers. Two utterances of the letter 

'A' by each of the 16 speakers randomly selected from the 

database population, to produce visually color discriminant 

visualizations, were selected for training and testing phases 

respectively. The letter was selected as it is a vowel, which has 

been shown to have large inter-speaker variability and small 

intra-speaker variability, a desired feature for high performance 

of speaker recognition [47][48]. 

IV. DNN OPTIMIZATION STRATEGY AND OBSERVATIONS 

pt-SNE has three parameters which can be tuned - the 

perplexity value, 𝑣 and DNN architecture. For 3D 

visualizations of high dimensional datavectors, 𝑣 would 

eventually be set to 2. Assuming initial value of 20 for 

perplexity, the DNN architecture is then determined. Our DNN 

architecture was motived by [32], and had an initial setting of  
(𝐷 − 100 − 100 − 100 − 𝑑) where  𝐷 is the number of 

sigmoid-activated neurons at the input layer, and 𝑑 is the 

number of linear neurons which form the output layer. Hence 

for our data, D=67 and d=3. The DNN is trainable for 200 

epochs. Fig. 2 shows the 3D visualization obtained for this 

initial architecture. A structure with moderate class separation 

and few overlapping is observed.  

  

 
Fig. 2 A 3D view of low dimensional embeddings for letter ‘A’ only 

(DNN Architecture (67-100-100-100-3), KL Divergence: 34193e-5) 

 

The DNN parameters are then optimized to improve class 

separation. The parameters are tuned according to the following 

priority order: (i) network’s number of layers, (ii) number of 



 

 

neurons employed at each layer, and (iii) maximum number of 

training epochs [49]. The quality of the low dimensional 

visualizations achieved were assessed using the Kullback-

Leibler (KL) divergence obtained from five consecutive runs of 

pt-SNE for the same set of parameters and based on visual 

judgement of class separability and conciseness. The number of 

layers for DNN is a primary parameter determining its 

performance. Too few layers results in inadequate feature 

extraction from the network inputs and eventually lead to 

inaccurate network output(s). On the other hand, too many 

layers prevent generalization of the model as the DNN is over-

trained to fit the training data only. Our experimental results for 

optimizing the DNN number of layers showed that a five-layer 

architecture succeeded in maximizing the global variance of 

low dimensional embeddings and was nominated as the 

optimum number of layers. To optimize the number of neurons, 

the three hidden layers were tested using combinations of 100, 

200 and 300 neurons, giving 6 different possibilities. The five-

run average KL divergence was evaluated for the 6 possible 

architectures to compare their performances. The DNN 

architecture (67-100-200-300-3) had a minimum average KL 

divergence value of 30214e-5. Preserving the pre-determined 

order of neuron-hungry layers, the number of neurons at each 

layer was varied up to 500 neurons1 to estimate the optimum 

number of neurons for each layer. The five-run average KL 

divergence was again evaluated to compare performances. The 

DNN architecture (67-100-200-400-3) was chosen as it yields 

the minimum average KL divergence of 28654e-5. The 

corresponding low dimensional visualization of the selected 

architecture is shown in Fig. 3. 

 

 
Fig. 3 DNN Architecture (67-100-200-400-3), KL Divergence: 

28654e-5 

The last parameter to be optimized is the maximum number 

of training epochs; one epoch is counted when all training 

datapoints are used once to update the DNN’s weights. A 

DNN’s learning curve constructed by the instantaneous KL 

divergences up to 1000 epochs was obtained and it was 

determined that 300 epochs are sufficient to achieve a 

 
1 Poor visualization showed insufficient training of growing weighted 

connections, when employing more than 500 neurons 

compromise between training time and generalization of DNN 

performance for testing data. 

Finally, pt-SNE utilizes the perplexity parameter to control 

the spread of neighborhood probability distribution centered 

about each datavector in the hyperspace. To visualize the effect 

of perplexity on the low-dimensional visualization, pt-SNE was 

run against several values of perplexity from 5 to 50. The best 

visualization was for perplexity value of 12 and is shown in Fig. 

4. Both global and local evaluation criteria were met with 

clusters showing good separability. We noticed a very small 

region containing few points from each class, marked with a 

black circle. This could represent a short-duration feature, such 

as noise present during initial recordings, which is common to 

all speakers. As the overall quality of visualization was not 

affected, we have left removal of this feature as a future work 

to improve our pre-processing stage. 

 

 
Fig. 4 Perplexity: 12; KL divergence 18509e-5 

V.   SPEAKER MODELLING 

Following our proposed approach, an unsupervised 

modelling of the 3D speaker-dependent features was conducted 

for each of the sixteen speakers (Speaker 1 to Speaker 16). Fig. 

5 shows samples of the visualizations for two speakers, 

indicating that the employed clustering approach is effective 

enough in terms of the clustering performance of GMM as well 

as the optimal number of clusters determined using the gap 

statistic. It can be noticed that an optimal number of clusters is 

assigned to each speaker based on his/her features’ structure 

within the low-dimensional map, where each cluster’s 

datapoints are having distinctive color. 

Ambiguous Overlap 



 

 

 

 
Fig. 5 Sample visualizations of unsupervised clustering of low-

dimensional speaker-dependent features 

VI.  DECISION MAKING 

Given the system is completely unsupervised, the system’s 

overall speaker identification accuracy slightly changes each 

time it is re-trained; however, it hit as high as 100% and 75% 

for training and testing datasets respectively. Comparing our 

classification accuracy with those reported in [50][51], it can be 

noticed that ours outperform many of the existing 

implementations of pt-SNE on other data domains. In addition, 

our utterances duration of less than 1 second is considered short 

and thus the accuracy rates achieved are acceptable with those 

reported in the literature for speaker recognition system based 

on short utterances [52].  

VII.  CONCLUSIONS AND FUTURE WORK 

As a summary, our contributions are: (i) a new approach for 

text dependent speaker identification which incorporates an 

unsupervised parametric t-SNE, and (ii) successful 

visualization of high dimensional features of voice signal in a 

3D map. The advantage of using pt-SNE is that it allows 

embedding out-of-sample data without the need to re-train the 

map. Also, utilizing a DNN allows for effective low 

dimensional embeddings by feeding forward high dimensional 

features, in a matter of milliseconds, thus a more 

computationally efficient and fast decision-making approach. 

Although, for proof of concept we tested with a relatively small 

number of samples of voice signals, this is the first time that 

high dimensional features of a dynamic voice signal were 

successfully visualized in a 3D map using a parametric 

dimensionality reduction technique. As there is no similar work 

on voice signal, the best comparison that could be made was 

with implementations of pt-SNE on other data domains; the 

highest speaker identification accuracy of 75% we obtained for 

out-of-sample data was higher than the others. Further work can 

be performed with higher number of sample data though visual 

inspection would be challenging. Pt-SNE could be substituted 

with other variants of t-SNE such as kernel t-SNE [53] or fisher 

kernel t-SNE [53] which are also parametric techniques but they 

do not require inspection of visualization graphs by a human 

observer. 
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